



# Testing the Reliability of Solder Balls

Chelsea Morand Ruben Contreras Ande Kitamura

## Overview

### Problems and Solutions

The Experiment

MaterialsMethods

Data

Conclusion

## More Storage with Less Packaging

#### Problem

- Dual in-line packages (DIPs) are packages being used for memory and they are changing to denser packaging
- Connecting components to printed circuit boards (PCBs) requires the lead of components being embedded into drilled holes in PCBs
- □ It is not efficient to drill hundreds of holes through PCBs for denser packages

#### Solution

- □ Using smaller pads with solder paste or solder balls to make connections to the board or PCBs
- Smaller and thinner packaging size, with more output and input channels from a single die, are in high demand

# The Experiment

## Materials

#### Solder Balls and Chips Machines

- SAC105 NiAu
- SAC305 NiAu
- SA105 OSP

- Nordson Dage 4000 Plus
- Duster
- Dage Shear 187-0307915163
- Hakko 394

\*SAC105 contains 98.5% Tin (Sn), 1.0% Silver (Ag), and 0.5% Copper (Cu). SAC305 contains 96.5% Sn, 3.0% Ag, and 0.5% Cu

## Methods

- 1. Turning the vacuum and Dage machine on
- 2. Changing the calibrations using the computer to adjust speeds
- 3. Performing shear tests
- 4. Collecting data and plotting it on a graph



Fig. 1(a) Hakko 394 is used to pick up the microchip from suction

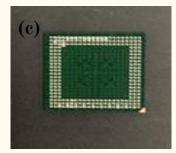
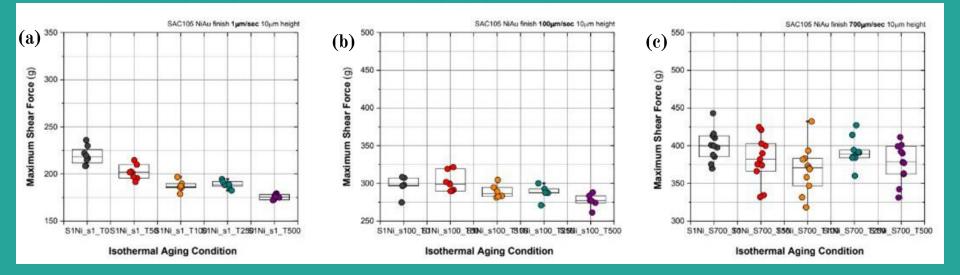
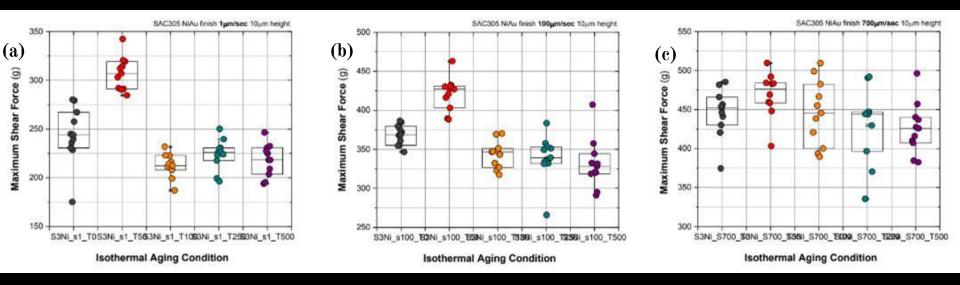


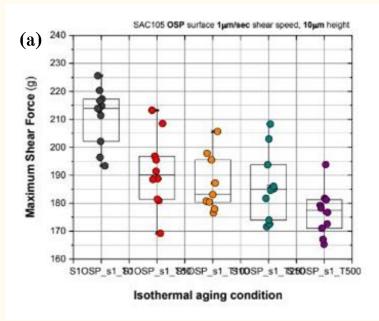

Fig. 1(c) A Ohr SAC105 NiAu chip post shearing



Fig. 1(b) The Nordson Dage 4000 plus is used to perform shear tests

# Data



Fig. 2(a) The SAC105 NiAu surface shear test results with  $1\mu$ m/s shear speed and  $10\mu$ m shear height at isothermal aging conditions 0hr, 50hr, 100hr, 250hr, and 500hr.

**Fig. 2(b)** The SAC105 NiAu surface shear test results with 100μm/s shear speed and 10μm shear height at isothermal aging conditions 0hr, 50hr, 100hr, 250hr, and 500hr.

**Fig. 2(c)** The SAC105 NiAu surface shear test results with 700μm/s shear speed and 10μm shear height at isothermal aging conditions 0hr, 50hr, 100hr, 250hr, and 500hr.



**Fig. 3(a)** SAC305 NiAu surface shear test results with 1μm/s shear speed and 10μm shear height at isothermal aging conditions 0hr, 50hr, 100hr, 250hr, and 500hr. **Fig. 3(b)** SAC305 NiAu surface shear test results with 100µm/s shear speed and 10µm shear height at isothermal aging conditions 0hr, 50hr, 100hr, 250hr, and 500hr. **Fig. 3(c)** SAC305 NiAu surface shear test results with 700μm/s shear speed and 10μm shear height at isothermal aging conditions 0hr, 50hr, 100hr, 250hr, and 500hr.



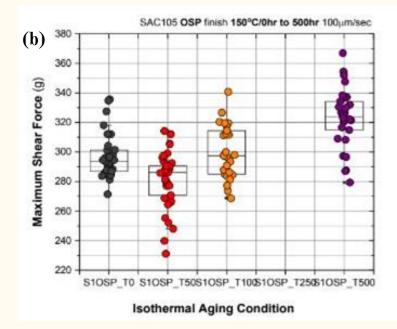
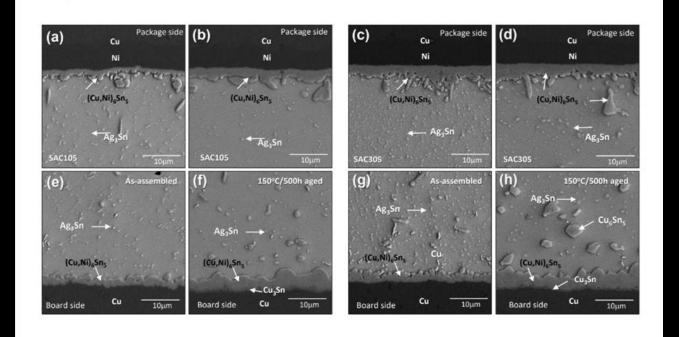




Fig. 4(a) SAC105 OSP surface shear test results with  $1\mu$ m/s shear speed and  $10\mu$ m shear height at isothermal aging conditions 0hr, 50hr, 100hr, 100hr, 250hr, and 500hr.

**Fig. 4(b)** SAC105 OSP 100µm/s shear test results at isothermal aging conditions 0hr, 50hr, 100h and 500hr.



**Fig. 5** Scanning electron microscopy cross-section microstructure of SAC105 (a)(e) before aging and (d)(f) after aging at 150°C/500h. SAC305 before aging (c)(g) and after aging at 150°C/500h (d)(h).°C/500h.

### Conclusions

- It is recognized that the  $700\mu$ m/s test results, in figure 5, do not demonstrate a wide range of distinguishable data. At each aging condition, the average shear forces are close to one another. It would be better to use the  $100\mu$ m/s shear test because it gives the best data.
- The average strength of SAC305 NiAu at 500hr aging does not get lower than the average strength of SAC105 NiAu but it does get lower than that of SAC105 OSP.
- The OSP chips have a higher tensile strength, which makes them stronger; however, this means they are also more brittle so if there is a sudden drop they are more likely to break. The SAC105 at a lower age have a lower tensile strength compared to the OSP chips, but they will not break as easily after a sudden drop.





# Acknowledgments

This research was funded by:

- National Science Foundation (NSF)
- The Garden State Louis Stokes Alliance for Minority Participation (GS-LSAMP) at Rutgers University
  Thank you to:
- Dr. Jiao
- Dr. Lee
- Siri Vegulla
- Portland State University
- Rutgers University

### References

Lee, Tae-Kyu, and Tae-Kyu Lee. Fundamentals of Lead-free Solder Interconnect Technology from Microstructures to Reliability. New York: Springer, 2015.

"LSAMP." GS. Accessed August 08, 2019. http://gslsamp.rutgers.edu/.

"National Science Foundation - Where Discoveries Begin." NSF. Accessed August 08, 2019. https://www.nsf.gov/policies/logos.jsp.

"Portland State University: Home." Portland State University | Home. Accessed August 08, 2019. https://www.pdx.edu/.