Colorado Rock Glacier Inventory: Active, Inactive and Relict Rock Glaciers

By Abby McCarthy

Research Experience for Undergraduates Program Portland State University Department of Geology Dr. Andrew Fountain (P.I.) Allison Trcka (Mentor)

Introduction	/		Method	/	
Classification		/	Rest	ilts	
Rock Glaci	ers				

Mass of rock, sediment and perennial ice, all flowing downslope

- Methods of formation:
 - Periglacial: when ice fills the space between rock debris
 - Glacial: ice-core glacier is covered in rock debris
 - Combination of periglacial and glacial
- Supply of rock debris and snow is important

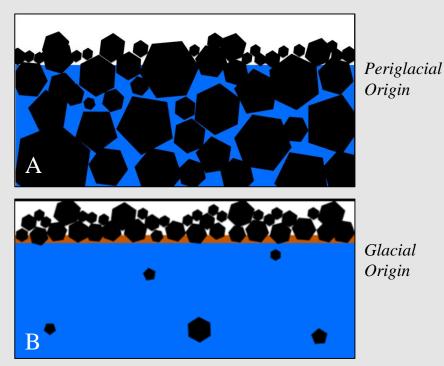
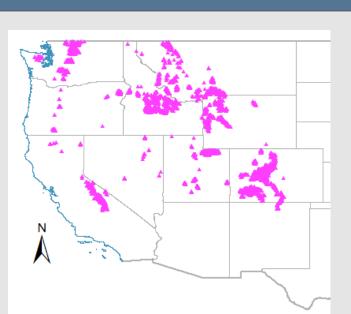


 Figure 1: Cross-sections of the formation of a rock
 glacier.

 Diagram: courtesy of Andrew Fountain


Introduction	/	Method	/
Classification		Results	
Significance			

- More resilient against climate change than other glaciers because debris insulates ice
- Fresh water source for ecosystems, agriculture and human use
- Cool air creates microclimates for plants and animals

Figure 2: Pikas are a kind of animal that benefits from rock glaciers as a habitat.

Introduction / Method / Classification / Results Previous Inventories

Figure 3: Each rock glacier in the Johnson (2018) inventory of the western U.S. is marked with a pink triangle.

Diagram: courtesy of Andrew Fountain

- Johnson (2018) provides a template for locating rock glaciers nationally
- Janke (2007) classified rock glaciers around Rocky Mountain National Park in Colorado

Issue that this study is addressing:

- Inconsistent classification of rock glaciers among studies
- Non-rock-glacier features are wronly being classified into rock glaciers

Introduction	/	Method	/	
Classification What I did	/	Results		
Located rock glaciers usin	g Google Earth Pro			
Categorized rock glaciers categories, also marking for glaciers				
Outlined rock glaciers on	ArcMap	N		

Repeated this process for more than two thousand rock glaciers and features!

Figure 4: The study area in Colorado is outlined in pink.

Classification

Method Results

Active Rock Glaciers

- Oversteepened front and side margins
 → contains ice
- Ridges and furrows often arcuate and convex downslope
 → currently moving
- Vegetation-free surface indicates ongoing movement
- Can completely occupy the axis of a valley

Figure 5: Active rock glacier at Pacific Peak in Colorado, outlined on Google Earth Pro

Classification

Method Results

Inactive Rock Glaciers

- Steep front and side margins \rightarrow contains ice
- Dominantly smooth surface indicates no internal deformation → no longer moving
- Minimal vegetation can be present on the surface, such as moss
- Surface erosion can also create gully-like features nearby

Figure 6: Inactive rock glacier at Ice Mountain in Colorado, outlined on Google Earth Pro

Classification

Method Results

Relict Rock Glaciers

- Gentler terminal front and sides
 → lack of ice
- Subdued ridges and furrows or a flat surface
- Vegetation present
 → no longer moving
- Deflated surface and collapse structures
- Most variety

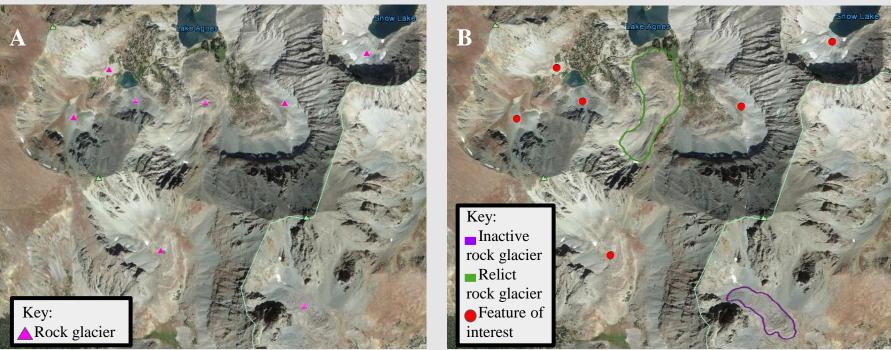
Figure 7: Relict rock glacier near Clark Peak in Colorado, outlined on Google Earth Pro

Classification

Method Results

Features of Interest

Figure 8: Feature of interest near Mt. Arkansas in Colorado on Google Earth Pro. This example does not flow downvalley and is therefore not a rock glacier.

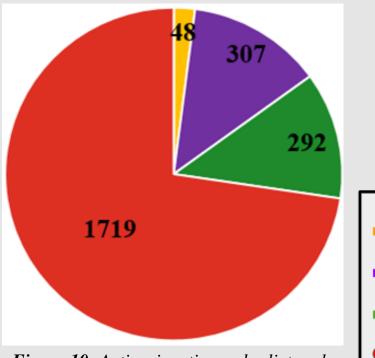

Features of interest are **not** rock glaciers but have similar characteristics

- Can be flat or have steep margins
- Usually stop at valley walls rather than flowing down the valley
- Various shapes: sometimes wider than long, ridge or series of ridges parallel to the valley wall
- Sometimes carved by rivers

Classification

Method Results

Classification Comparison


Figure 9: Johnson's classification (left) and this study's classification (right) of same area near Mount Mahler and Mount Richthofen.

• This study re-classified many points as features of interest - not rock glaciers.

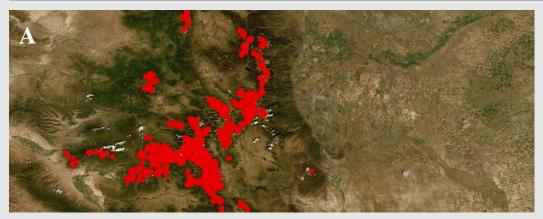
Classification

Method **Results**

Results: Rock Glaciers Located

Figure 10: Active, inactive and relict rock glaciers and features of interest located

Key: Active rock glacier Inactive rock glacier Relict rock glacier Feature of interest


This study classified:

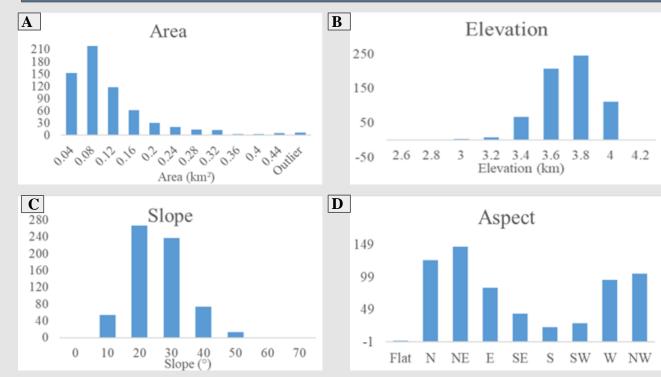
- 647 rock glaciers:
 - 48 (7.4%) active
 - 307 (47.4%) inactive
 - 292 (45.1%) relict
- 1,719 features of interest
- 74 non-rock-glacier points


Classification


Method **Results**

Results: Rock Glaciers Located

Figure 11: Features of interest (A) and rock glaciers outlined (B) in the study area in Colorado.



Classification

Method **Results**

Results: Rock Glaciers Located

Average area: 0.005632 km² Average elevation: 3.613 km Average slope: 20.92° Mean aspect: Northeast

Figure 12: Area (A), elevation (B), slope (C) and aspect (D) for rock glaciers in the study area in Colorado.

Acknowledgements

- Allison Trcka (Mentor)
- Dr. Andrew Fountain (P.I.)
- Julian Cross and Bryce Glenn
- Dr. Jun Jiao and Dr. Zhiqiang (Tony) Chen
- Siri Vegulla (REU Coordinator)

Thank you to the National Science Foundation for funding the Research Experience for Undergraduates program at Portland State University.

Photo credit: Bryce Glenn

It was nice to meet you, fellow REU participants! Chelsea Morand, Warren Gunn, Audrey Houlis, Finnegan Clark, Gabija Laskonyte, Hsiang Thum, Jennifer Lemus, Alexander Gonzalez, and Jessica Chung

References

- Brardinoni, F., Scotti, R., Sailer, R., & Mair, V. (2019). Evaluating sources of uncertainty and variability in rock glacier inventories. *Earth Surface Processes and Landforms*. doi:10.1002/esp.4674
- Colucci, R. R., Forte, E., Žebre, M., Maset, E., Zanettini, C., & Guglielmin, M. (2019). Is that a relict rock glacier? *Geomorphology*, 330, 177-189. doi:10.1016/j.geomorph.2019.02.002
- Dulude-de Broin, F. "File: American Pika (Ochotona Princeps) with a Mouthful of Flowers.jpg." Wikipedia Commons, 24 July 2016.
- Fountain, A.G., & Hoffman, M., Jackson, K., Basagic, H., Nylen, T., & Percy, D. (2007). Digital outlines and topography of the glaciers of the American West: U.S. Geological Survey Open-File Report 2006–1340, 23.
- Janke, J. R. (2007). Colorado Front Range Rock Glaciers: Distribution and Topographic Characteristics. *Arctic, Antarctic, and Alpine Research, 39*(1), 74-83. doi:10.1657/1523-0430(2007)39[74:cfrrgd]2.0.co;2
- Johnson, G. F. (2018). Rock Glaciers of the Contiguous United States: Spatial Distribution, Cryospheric Context, and Riparian Vegetation (Master's thesis, Portland State University, 2018). Portland: PDXScholar. doi:https://pdxscholar.library.pdx.edu/open_access_etds/4507/
- Jones, D. B., Harrison, S., Anderson, K., & Whalley, W. B. (2019). Rock glaciers and mountain hydrology: A review [Abstract]. *ScienceDirect,* 193, 66-90. doi:https://doi.org/10.1016/j.earscirev.2019.04.001
- Krainer, K., & Ribus, M. (n.d.). A Rock Glacier Inventory of the Tyrolean Alps (Austria). *Austrian Journal of Earth Sciences*, *1052*, 32-47. Retrieved August 5, 2019, from http://www.geo-zt.at/fileadmin/user_upload/04_Publikationen/e_Geowissenschaftliche_Literatur/2012_A-rock-glacier-inventory-of-the-Tyrolean-Alps.pdf
- Wahrhaftig, C., & Cox, A. (1959). Rock Glaciers In The Alaska Range. *Geological Society of America Bulletin*, 70(4), 383. doi:10.1130/0016-7606(1959)70[383:rgitar]2.0.co;2

Trcka (2020) unpublished