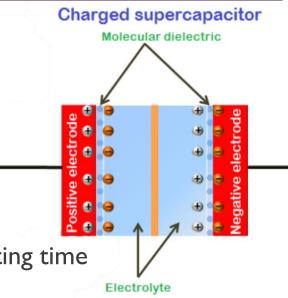
EFFECT OF SYNTHESIS TIME ON FORMATION OF FE_3O_4 NANOPARTICLES USING THE SOLVOTHERMAL PROCESS

ELAINE YANG

REU SYMPOSIUM 8/10/18 DR JIAO'S LAB

OVERVIEW


- Introduction
- Method
- Results
- Discussion
- Conclusion

INTRODUCTION

- Transition oxide nanoparticles (NPs) exhibit high magnetic signals and can be altered by external magnetic fields
 - Unique physical and chemical properties; lighter and stronger; high surface area-volume ratio
 - Magnetite (Fe₃O₄) NPs are ferrimagnetic
 - Very abundant, environmentally friendly, and can be "grown" rather than built
 - Functional groups can be used for more sensitive biolabeling, biodelivery, and higher contrast MRIs
- Hybridized graphene and iron oxide NPs have improved specific capacitance and less electrical resistance
 - Graphene has a high surface area and electrical conductivity
 - Can serve as substrate and conductive pathway for NPs

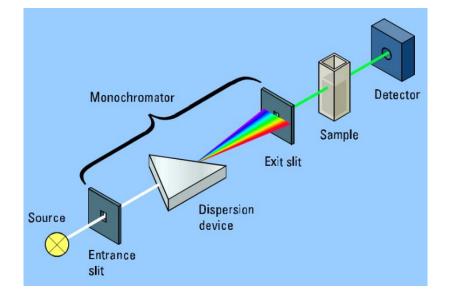
INTRODUCTION CONT.

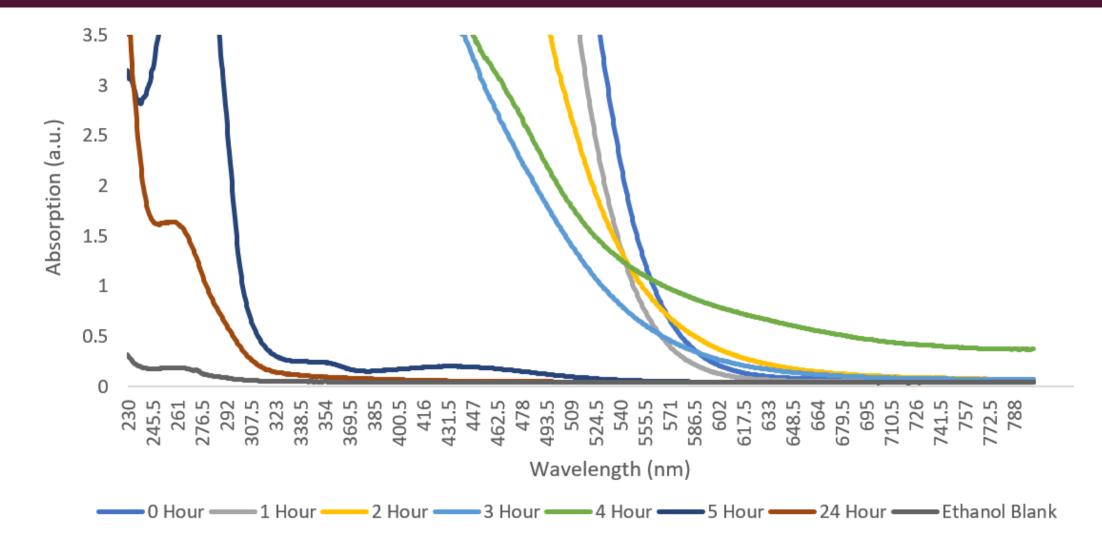
- Hybrid used as electrode material in supercapacitors/double-layer capacitors
 - More energy efficient than traditional batteries and capacitors
 - Builds up charges on two metal plates to store static electricity
 - Creates thin double-layer of charge
- Properties of NPs altered by precursor material, heating temperature, and heating time
- Size, shape, and distribution largely impact its magnetic properties
- One-step procedure produces NPs attached to the graphene surface
 - Hypothesized that nuclei are absorbed into spherical NPs through intermolecular forces
- Purpose: to explore the effect of synthesis time on altering the size and distribution of iron oxide nanoparticles on graphene sheets

METHOD OVERVIEW

- Iron (III) acetylacetonate, expanded graphite, ethanol
- Simple solvothermal process forms graphene attached to magnetite nanoparticles, which can be used for other transition metals

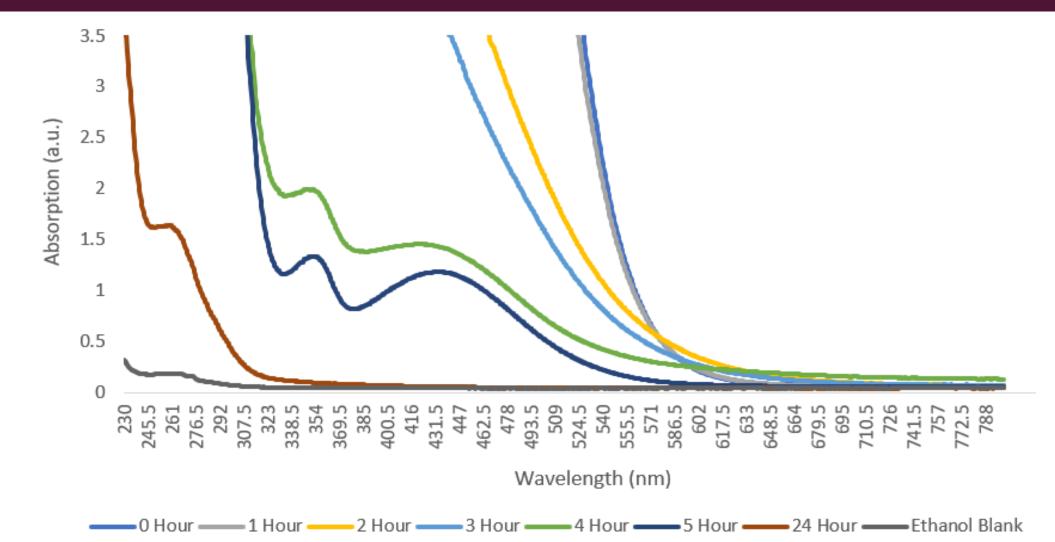
Graphene Exfoliation


- Sonicate expandable graphite with NMP and centrifuge graphene out
- Solvothermal Synthesis
 - Place iron (III) acetylacetonate and 200 proof ethanol in an autoclave
 - Heat autoclave in a muffle furnace at 180 C for varying amounts of time
 - Put autoclave under forced air cooling and centrifuge product out
- Test various heating times to see effects on particle size and coating density

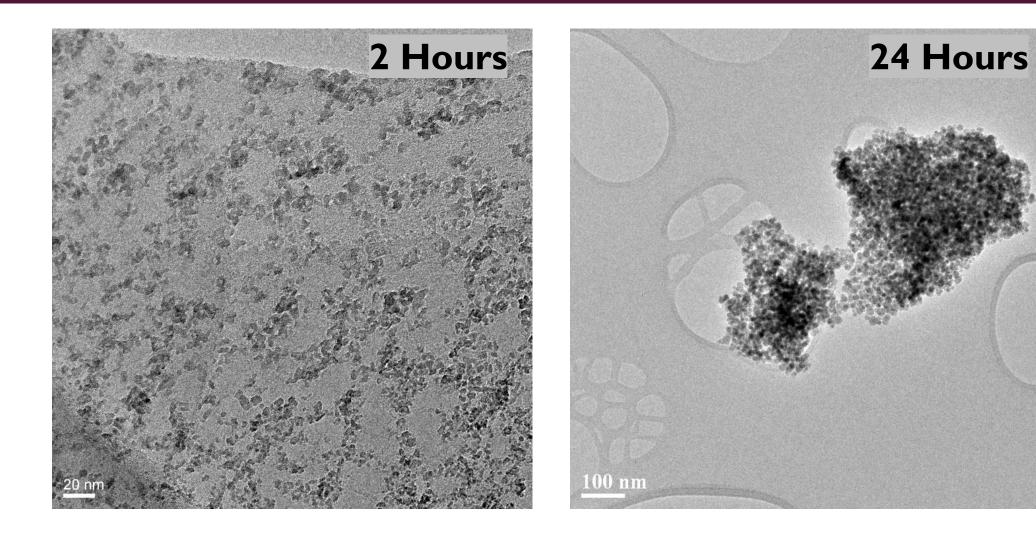

CHARACTERIZATION

UV-Vis Spectroscopy

- Remaining solution placed into a cuvette
- Energy is passed through and absorbed to excite electrons to higher energy orbitals
- Detector records degree of absorption at each wavelength
- Beer-Lambert Law states absorbance is proportional to the concentration of a solution
- Measures change in concentration of reactants or products over time
- Transmission Electron Microscope (TEM)
 - Used to observe and characterize possible structures that are formed



UV-VIS OF HEATING TIME VS ABSORPTION (TRIAL I)



7

UV-VIS OF HEATING TIME VS ABSORPTION (TRIAL 2)

TEM IMAGES OF FE₃O₄ NANOPARTICLES

DISCUSSION

UV-Vis Spectroscopy

- First trial demonstrated a sudden jump between 4 and 5 hours of heating
- Repeated a second trial due to leaks during the synthesis process and unclear results
- Second trial showed a less dramatic jump between 3 and 4 hours of heating
- Most of the synthesis completes within 5 hours of heating
- Transmission Electron Microscope (TEM)
 - Nanoparticles were being formed on the carbon support even with only 2 hours of heating
 - Synthesis is able to proceed (but not complete) within a short amount of time

CONCLUSION

- Majority of the reaction completes within 5 hours of heating time, which is much shorter than the previously hypothesized 16 hours
 - Allows for more efficiency with reduced synthesis times of iron oxide nanoparticles
- Understanding the growth pattern of the nanoparticles allows us to more accurately tailor the particle size and distribution
- Future work would center around gathering consistent data on heating times from 0 to 24 hours
- Can be used for large-scale production and more environmentally friendly devices due to its wide range of capabilities and possible applications

ACKNOWLEDGEMENTS

This research was made possible by the generous support of the National Science Foundation to fund the REU program and Saturday Academy for providing this opportunity. I would like to thank my mentors and reviewers from PSU who guided me through the research process and provided me with a space to conduct my project. I would also like to thank my lab partners for their constant support and assistance.

REFERENCES

- A.Ali et al., "Synthesis, characterization, applications, and challenges of iron oxide nanoparticles," Nanotechnol. Sci. Appl., vol. 9, pp. 49–67, 2016. [1]
- W. Qian et al., "Surfactant-free hybridization of transition metal oxide nanoparticles with conductive graphene for high-performance supercapacitor," [2] Green Chem., vol. 14, no. 2, pp. 371–377, 2012.
- I. Xie, S. Peng, N. Brower, N. Pourmand, S. X. Wang, and S. Sun, "One-pot synthesis of monodisperse iron oxide nanoparticles for potential biomedical [3] applications," Pure Appl. Chem., vol. 78, no. 5, pp. 1003–1014, 2006.
- W.Wu, Q. He, and C. Jiang, "Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies," Nanoscale Res. Lett., vol. 3, no. 11, [4] pp. 397–415, 2008.
- [5] L. Zhuang, W. Zhang, Y. Zhao, H. Shen, H. Lin, and J. Liang, "Preparation and characterization of Fe3O4particles with novel nanosheets morphology and magnetochromatic property by a modified solvothermal method," Sci. Rep., vol. 5, pp. 1–6, 2015.
- [6] Z. Kozakova et al., "The formation mechanism of iron oxide nanoparticles within the microwave-assisted solvothermal synthesis and its correlation with the structural and magnetic properties," Dalt. Trans., vol. 44, no. 48, pp. 21099–21108, 2015.
- [7] W. Reusch, "Visible and Ultraviolet Spectroscopy," *IOCD*, 2013. [Online]. Available: https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/spectrpy/uv-vis/spectrum.htm. [Accessed: 03-Aug-2018].
- [8] "Introduction to Ultraviolet-Visible Spectroscopy (UV)," *Royal Society of Chemistry*, 2009. [Online]. Available: http://www.rsc.org/learn-chemistry/content/filerepository/CMP/00/001/304/UV-Vis_Student resource pack_ENGLISH.pdf. [Accessed: 03-Aug-2018].
- S.T. Picraux, "Nanotechnology," Encyclopaedia Britannica, 2018. [Online]. Available: https://www.britannica.com/technology/nanotechnology. [Accessed: Ì l-Jul-2018].
- https://www.google.com/url?sa=i&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjxi6rMs9 cAhXI6oMKHUUCDz8QjRx6BAgBEAU&url=http%3A%2F %2Fwww.physics-and-radio-electronics.com%2Felectronic-devices-and-circuits%2Fpassivecomponents%2Fcapacitors%2Fsupercapacitor.html&psig=AOvVaw3HII17B8-e92GrD3n7V It&ust=1533884351142905
- http://faculty.sdmiramar.edu/fgarces/labmatters/instruments/uv_vis/Cary50_Pic/conventional-spectrophotometer.png