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Aim 
• Characterize electrical double layer capacitance (EDLC) vs. 

pseudocapacitance. 

 

• Why is this important? 
o Pseudocapacitance greatly enhances overall capacitance of a supercapacitor. 

• Makes supercapacitors “super.” 

 

o Pseudocapacitance can alter the properties of materials, such as magnetism. 

• Useful to determine when pseudocapacitance occurs in order to track these changes. 



Supercapacitors 
What is a supercapacitor? 

 

o Everyday capacitor:  

• Stores energy in electric field via electrostatic buildup. 

 

o Hybrid supercapacitor:  

• Stores energy electrically and chemically [1]. 

• Electrolytic cell [2].  

• Uses an electrolyte as dielectric material. 

 

• Capacitance caused by: 

o EDLC: 

• Special type of parallel plate capacitor. 

• Stores charge in an electric field. 

o Pseudocapacitance: 

• Utilizes transition metal oxides to host redox reactions with electrolyte. 

• Stores charge as chemical energy. 



EDLC 
• Electrical double layer: 

 

o First layer: Stern layer [3]. 

• Negative electrolyte ions attracted to positive 
plate.  

• Positive electrolyte ions attracted to negative 
plate. 

• Layer of ions adsorbed to electrode surface 
forms Stern layer. 

 

o Second layer: diffuse layer [1]. 

• Formed by repulsion of like-charged ions. 

 

o Each layer acts as parallel plate capacitor. 
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o The two layers are in series with each other. 
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Pseudocapacitance 
• Electrochemical in nature. 

 

o Caused by redox reactions at electrode/electrolyte interface [1]. 

 

o Stores energy chemically [4]. 

 

o Oxidation of working material: 

• Increase in cell current due to release of electrons [5]. 

 

o Reduction of working material: 

• Decrease in cell current due to absorption of electrons. 

 

o Only occurs in sufficiently high voltage windows. 

 

• Greatly increases overall capacitance. 

 

• Pseudocapacitance is in parallel with EDLC. 



Characterization 
• EDLC vs. pseudocapacitance: 

o Cyclic voltammetry (CV): 

• Varies voltage at constant sweep rate and measures cell current. 

• Ideal EDLC produces rectangular voltammogram. 

• Visible current spikes at certain potentials when redox reactions occur. 

o Indicative of pseudocapacitance. 

 

• Repeatability: 
o Multiple CV cycles over same voltage window. 

• Voltammograms should be consistent and symmetric if redox reaction is reversible. 

 

• Stability of working material: 
o Raman spectroscopy: 

• Should be consistent before and after full cycles. 

o Indicates no change in chemical composition. 



Supercapacitor Assembly  

1. Working electrode (anode): 
o Current collector: copper foil. 

o Working material: Fe3O4 nanoparticles mixed with PVDF 
binder slurry (90:10), drop-casted on to copper foil. 

 

2. Dielectric: 
o Glass microfiber paper soaked in 1 M 

Tetraethylammonium tetrafluoroborate (TEABF4) organic 
electrolyte. 

 

3. Counter electrode (cathode): 
o Graphite sheet. 

 

 

4. Assembly placed in Teflon clamp for 
testing 

(1) (2) (3) 

(4) 



Results: EDLC vs. Pseudocapacitance 

• EDLC: 
o Occurs in ΔV < 0.8 V 

window. 

 

• Pseudocapacitance: 
o Occurs in ΔV > 0.8 V 

window. 

o Redox peaks: 

• Reversible. 

• 0.5 V. 

• -0.06 V. 

 

• Irreversible redox: 
o Occurs in ΔV > 3 V window. 

o Results in rapid degradation 

of working material. 
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Results: Capacitance 

• EDLC specific capacitance: 

o 155 mF/g 
 

• Total specific capacitance with EDLC and pseudocapacitance: 

o 239 mF/g 

o Total capacitance increases significantly with pseudocapacitance. 

 

 



Results: Repeatability 

• Multiple cycles over 

same ΔV:  
o Voltammograms are 

consistent. 

o Redox peaks occur at 

same voltages. 

o Results are consistent and 

repeatable. 

o Consistency also indicates 

occurrence of reversible 

redox reactions. 



Results: Working Material Stability 

• Raman, single cycle: 
o Nearly identical spectra 

before and after complete 

cycles. 

o Indicates no chemical 

change after cycling. 
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Results: Working Material Stability 

• Raman, 200 cycles: 
o Some change in Raman 

spectra. 

o Indicates changes in 

chemical composition 

and degradation of 

working material.  6
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Conclusions 
• EDLC: 

o Observed in voltage windows below 0.8 V. 

 

• Pseudocapacitance: 
o Observed in voltage windows above 0.8 V. 

o Redox peaks observed at 0.5 and -0.06 V. 

o Irreversible redox reactions occur in voltage windows above 3 V. 

 

• Results are repeatable over many cycles. 

 

• Working material is stable for several cycles, but will degrade over 

many cycles. 
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