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Exciting Applications of Graphene

« 2D, one-atom-thick layer of carbon atoms arranged
In a hexagonal lattice

« Conductivity
* Transparency
 Flexibility

« Applications include:
» Photovoltaic cells

* Field effect transistors
 Electronics (replacement for Indium Tin Oxide)

 Limiting Factor: lack of process for large-scale,
high-quality production



Chemical Vapor Deposition Synthesis
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Zhang, Y.; Zhang, L.; Zhou, C. “Review of
Chemical Vapor Deposition of Graphene and
Related Applications”. Acc. Chem. Res. 2013, 46,
2329- 2339.



Polymer Mediated Transfer

PMMA coating
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Zhang, Y.; Zhang, L.; Zhou, C. “Review of Chemical Vapor Deposition of Graphene and Related Applications”. Acc. Chem. Res. 2013, 46, 2329- 2339.

 Catalyst typically etched with FeCl; or other chemical etchant

» Polymethyl-methacrylate (PMMA) coat is applied to preserve graphene shape

« PMMA/graphene column transferred onto Si wafer and cured before PMMA
removal with acetone



Direct Graphene Synthesis
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Kato, Toshiaki and Rikizo Hatakeyama, “Direct Growth of Doping-Density-
Controlled Hexagonal Graphene on SiO2 Substrate by Rapid-Heating Plasma
CVD”. ACS Nano 2012, 5, 10, 8508-8515.



Graphene Characterization

a) Optical Microscopy

» Easy tool to spot large details and
residues.

* Provides general sense sample
cleanliness.

b) Raman Spectroscopy

« Utilizes Raman scattering to
Ead measure signal strength
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Figure 1. a) Optical image of an electrically dissolved Ni graphene sample in 1:10
H,SO,/DI and b) corresponding Raman spectrum.



Challenges with Graphene Growth

« Initial quality of graphene is difficult to determine

« Unsure if defects are caused by growth conditions or by the etching process
introducing residue and causing deformities

* FeCl; can be harsh on grown graphene

» Residues affect graphene device performance
* Metal ions
» Polymer residues

* Alternatives to direct wet etching with FeCl, to analyze true graphene
guality
» Electrochemical Ni Delamination
» FeCl; Vapor Etching
» Electrochemical Ni Dissolution



Electrochemical Delamination (Attempted)
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* Voltages set between 1.5-2.5V
for times ranging from 15
seconds to 30 mins using
potentiostat

« Graphene delaminated along
with metal film
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Wet and Vapor FeCl, Etching

Wet FeCl; Etching

* FeCl;dissolves Ni catalyst
« Usually requires a few hours
* Cleaned in deionized (DI) water baths
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K . » FeCl;vapors have capacity to dissolve
D A 4 Ni catalyst

« Typically requires 24+ hours
* Cleaned in DI water baths
» Goal: reducing deformations

Figure 2. Small graphene growths are processed in wet and vaporous
environments in a divided Petri dish.



Electrochemical NI Removal
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Schematic of Ni removal

With applied potential Ni dissolves in 1:200 H,SO,/DI
Water, leaving only graphene

Vastly reduced chemical concentration compared to
FeCl,

Requires around 30 mins
Reduces necessary chemical volume
Higher concentrations reduce time




Etch Comparison

djOO

450 .
electrochemical

wet « Wet chemical etching exhibits
vapor strongest signal.

400

w
wn
o

w
o
o

« Graphene quality appears
relatively consistent.

* Wet etch has more noise
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Figure 3. Optical images of a(n) a) electrochemical Ni removal, b) wet FeCl, etch, and c) vapor FeCl; etch, with d)
superimposed Raman spectra.



Etch Comparison
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Figure 4. D:G ratio maps of a) electrochemical Ni removal sample, b) wet FeCl; etch, and c) vapor FeCl, etch, with d),
e), f) respective 2D:G ratio maps



Solution Concentration
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« Higher concentrations of
solution reduce etching time.
2D . potential to dramatically
reduce processing times and
/\ chemical waste.

Figure. Optical images of a(n) a) electrochemical Ni removal in 1:200 H,SO,/DI solution, b) in 1:10 H,SO,/DI solution, and c)

superimposed Raman spectra.



Conclusions and Future Insights

 Quality of synthesized graphene appears low
« High D/G and low 2D/G ratios through all methods

« Similar Raman spectra
« Strength
* Noise

* Electrochemical Ni removal saves time
« Reduces D/G bridging effect

 Higher concentrations of sulfuric acid lead to faster Ni dissolution
« Minor amounts could lead to less contamination
« Find right parameters for efficient etching

« Residue analysis with Scanning Tunneling Microscope
» Reveal contaminants left using Energy Dispersive X-ray Spectroscopy
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