Towards Cleaner Graphene Catalyst Removal August 9, 2019

Hsiang Thum REU Program 2019 Portland State University Principal Investigator: Dr. Jun Jiao Mentor: Dibyesh Shrestha

National Science Foundation WHERE DISCOVERIES BEGIN

- Exciting Applications of Graphene
- Synthesis and Characterization
- Challenges
- Etching Improvements
- Summary and Future Recommendations

Exciting Applications of Graphene

- 2D, one-atom-thick layer of carbon atoms arranged in a hexagonal lattice
 - Conductivity
 - Transparency
 - Flexibility
- Applications include:
 - Photovoltaic cells
 - Field effect transistors
 - Electronics (replacement for Indium Tin Oxide)
- Limiting Factor: lack of process for large-scale, high-quality production

Chemical Vapor Deposition Synthesis

Zhang, Y.; Zhang, L.; Zhou, C. "Review of Chemical Vapor Deposition of Graphene and Related Applications". Acc. Chem. Res. 2013, 46, 2329–2339.

- Ni or Cu film heated to 900°C-1000°C to allow carbon atom dissolution
- Mixture of H₂/C₂H₂ gas introduced into chamber; carbon ions dissolve in metal film
- Cu surface reaction is self-limiting
- As Ni cools, carbon precipitates out on top

Polymer Mediated Transfer

Zhang, Y.; Zhang, L.; Zhou, C. "Review of Chemical Vapor Deposition of Graphene and Related Applications". Acc. Chem. Res. 2013, 46, 2329–2339.

- Catalyst typically etched with FeCl₃ or other chemical etchant
- Polymethyl-methacrylate (PMMA) coat is applied to preserve graphene shape
- PMMA/graphene column transferred onto Si wafer and cured before PMMA removal with acetone

Direct Graphene Synthesis

Inductively Coupled Plasma Chemical Vapor Deposition (ICPCVD)

Kato, Toshiaki and Rikizo Hatakeyama, "Direct Growth of Doping-Density-Controlled Hexagonal Graphene on SiO2 Substrate by Rapid-Heating Plasma CVD". ACS Nano 2012, 5, 10, 8508-8515.

- a) Ni film heated to 500°C to allow carbon atom dissolution
- b) Mixture of H_2/C_2H_2 plasma introduced into chamber; carbon ions dissolve in Ni film
- c) As Ni cools, carbon precipitates on top **and** in between the Ni and Si substrate
- d) Ni is etched away with FeCl₃ to reveal only graphene left on the surface

Graphene Characterization

Figure 1. a) Optical image of an electrically dissolved Ni graphene sample in 1:10 H_2SO_4/DI and b) corresponding Raman spectrum.

a) Optical Microscopy

- Easy tool to spot large details and residues.
- Provides general sense sample cleanliness.
- b) Raman Spectroscopy
 - Utilizes Raman scattering to measure signal strength
 - 2D/G: Layering
 - D/G: Defects

Challenges with Graphene Growth

- Initial quality of graphene is difficult to determine
 - Unsure if defects are caused by growth conditions or by the etching process introducing residue and causing deformities
 - FeCl₃ can be harsh on grown graphene
- Residues affect graphene device performance
 - Metal ions
 - Polymer residues
- Alternatives to direct wet etching with FeCl₃ to analyze true graphene quality
 - Electrochemical Ni Delamination
 - FeCl₃ Vapor Etching
 - Electrochemical Ni Dissolution

Electrochemical Delamination (Attempted)

- Samples placed in 1.0M NaOH solution with Pt foil electrode
- Voltages set between 1.5-2.5V for times ranging from 15 seconds to 30 mins using potentiostat
- Graphene delaminated along
 with metal film

Wet and Vapor FeCl₃ Etching

Figure 2. Small graphene growths are processed in wet and vaporous environments in a divided Petri dish.

Wet FeCl₃ Etching

- FeCl₃ dissolves Ni catalyst
- Usually requires a few hours
- Cleaned in deionized (DI) water baths

Vapor FeCl₃ Etching

- FeCl₃ vapors have capacity to dissolve Ni catalyst
- Typically requires 24+ hours
- Cleaned in DI water baths
- Goal: reducing deformations

Electrochemical Ni Removal

sample (unetched/etched regions)

Ni-graphene sample

Sulfuric acid solution

Ni removal process

Schematic of Ni removal

- With applied potential Ni dissolves in 1:200 H₂SO₄/DI Water, leaving only graphene
- Vastly reduced chemical concentration compared to FeCl₃
- Requires around 30 mins
- Reduces necessary chemical volume
- Higher concentrations reduce time

Etch Comparison

- Wet chemical etching exhibits strongest signal.
- Graphene quality appears relatively consistent.
 - Wet etch has more noise
- Electrochemical method reduces D/G bridging.
 - Wet: 4:1 D/bridge
 - Vapor: 5:1 D/bridge
 - Electrochemical: 6.8/1 D/bridge

Figure 3. Optical images of a(n) **a**) electrochemical Ni removal, **b**) wet FeCl₃ etch, and **c**) vapor FeCl₃ etch, with **d**) superimposed Raman spectra.

Etch Comparison

Figure 4. D:G ratio maps of **a**) electrochemical Ni removal sample, **b**) wet FeCl₃ etch, and **c**) vapor FeCl₃ etch, with **d**), **e**), **f**) respective 2D:G ratio maps

Ratio maps are similar across the board.

- Reveals fairly defect dense, multilayer graphene
- Somewhat expected as samples are from the same graphene growth.

Solution Concentration

- Higher concentrations of solution reduce etching time.
- Potential to dramatically reduce processing times and chemical waste.

Figure. Optical images of a(n) **a**) electrochemical Ni removal in 1:200 H₂SO₄/DI solution, **b**) in 1:10 H₂SO₄/DI solution, and **c**) superimposed Raman spectra.

Conclusions and Future Insights

- Quality of synthesized graphene appears low
 - High D/G and low 2D/G ratios through all methods
 - Similar Raman spectra
 - Strength
 - Noise
- Electrochemical Ni removal saves time
 - Reduces D/G bridging effect
- Higher concentrations of sulfuric acid lead to faster Ni dissolution
 - Minor amounts could lead to less contamination
 - Find right parameters for efficient etching
- Residue analysis with Scanning Tunneling Microscope
 - Reveal contaminants left using Energy Dispersive X-ray Spectroscopy

Acknowledgements

This research was sponsored by:

National Science Foundation WHERE DISCOVERIES BEGIN

Special thanks to:

- Dr. Jun Jiao (Principal Investigator, PSU Faculty)
- Dibyesh Shrestha (Mentor, PSU Graduate Student)
- Nick Ries (PSU Graduate Student)
- Siri Vegulla (REU Coordinator)

- Augustin Griswold (PSU Undergraduate)
- Jessica Vinh (PSU Undergraduate)
- Nickola Ovchinnikov (PSU Undergraduate)
- Grayson Kolar (PSU Undergraduate)
- Yilian Liu (Reed Undergraduate)