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Biological Inspiration for Neural Networks

• Soma/cell body (input)

• Dendrites (inputs)

• Axon (output)

• Information is 

propagated through

activation of neuron

and resulting

action potential down axon

By BruceBlaus (Own work) [CC BY 3.0], via Wikimedia Commons
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What Makes Up a Neural Network (NN)?

• Perceptrons
– Inputs must be linearly separable
– Linear classifier (binary)
– Weights are used multiplicatively to modify connections
– Multilayer perceptrons can form larger networks

– Are universal function approximators
– Multi-class perceptrons can handle more categories

• Sigmoid neurons / other models

• Dynamic networks
– Feedforward / Recurrent
– Can be made of perceptrons / other models
– Hopfield networks
– Boltzmann machines
– Echo state networks

Input Output
w1

w3

w2
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Characteristics of Networks

• Architecture
– Density / sparsity
– Arrangement of nodes
– Circular, feedforward

• System Dynamics
– Weights of connections between nodes

• Learning
– How the weights change with time
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Composition of a Feed-forward NN
(Multi-Layer Perceptron)

• Information moves in one direction (forward)

• Input layer

• Hidden layer

• Output layer

• Activation function

determines output

of each node,

typically tanh or sigmoid

Input Output

Hidden Layer
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Recurrent NNs

• Can be arranged more “creatively”

• Architecture produces cyclical properties

• Retain memories of past inputs, but have trouble “seeing” 
long patterns

• RNNs are harder to train
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Limitations of Networks

• Calculations of new weights between nodes in hidden 
layers can be computationally expensive

• No one network is suited to all tasks

• Different training algorithms are needed for different tasks 
and it can be a challenge to find the optimal algorithm

• Optimizing initial parameters involves guess work
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Solutions?

• Long-Short Term Memory

• Varying architectures (circular, sparsely connected, etc.)

• Hierarchical networks

• Better training algorithms?
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What is a Reservoir Computer?

• Also called an echo state network (ESN)

• Random, sparse architecture of nodes and weights
– Internal weights are due to dynamical properties of system 

itself

• We train the output layer, which can produce specific functions 
based on its adapted weights and the fixed weights of the 
hidden layers

• Even a bucket of water can be a reservoir computer [3]

[3] Fernando, Chrisantha; Sojakka, Sampsa; Of Series Lecture Notes In Computer Science, ISBN (2005), 
"Pattern Recognition in a Bucket", In Advances in Artificial Life: 978–3
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Training Methods (Simplified)

• Ordinary Linear Regression (OLR)

• Least squares

• Recursive Least Squares (RLS)

[13] Yildiz, I. B., Jaeger, H., & Kiebel, S. J. (2012). Re-visiting the echo state property. Neural Networks, 35, 1–9. 
http://doi.org/10.1016/j.neunet.2012.07.005

[13]
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Benchmarks

• Nonlinear Autoregressive Moving Average (NARMA-10)

• Mackey-Glass Time Series

• Sine wave prediction

y (t )=0.3 y (t−1)+0.05 y (t−1)∑
i=1

10

y (t−i)+1.5u (t−10) y (t−1)+0.1

dx (t)
dt

=
ax (t−τ)

1+x (t−τ)
10 −bx ( t)

[2] Čerňanský, M., & Tiňo, P. (2008). Predictive Modeling with Echo State Networks. 18th International 
Conference on Artificial Neural Networks, (1), 778–787.

[2]

[2]
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Results of OLR on NARMA-10 Task
N = 100

NMSE = 0.1283
ESN framework by A. Goudarzi
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Results of OLR on NARMA-10 Task
N = 1000

NMSE = 0.0274
ESN framework by A. Goudarzi
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Results of OLR (batch) NARMA-10

NRMSE = 0.11899

N = 100

ESN toolbox by H. Jaeger
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Results of OLR (batch) NARMA-10

NRMSE = 0.16854

N = 1000

ESN toolbox by H. Jaeger
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Results of RLS (online) NARMA-10

NRMSE = 0.29867

N = 100

ESN toolbox by H. Jaeger
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Results of RLS (online) NARMA-10

NRMSE = 0.16362

N = 1000

ESN toolbox by H. Jaeger
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Conclusions

• RLS performs well for implementation in online 
learning schemes

• More benchmarks need to be tested to evaluate 
strengths and limitations of RLS

• Initial parameters may be further optimized to improve 
performance

• Next steps:
– NARMA-30
– Mackey-Glass time-series
– Need to compare RLS to OLR in online contexts
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