# The Optimization of TiO<sub>2</sub> Thin Films for Photocatalytic Water Purification

Anthea Leng The Jiao Lab Portland State University

### Ksepw

Build an efficient water purification system through photocatalysis using UV light and titanium dioxide.

Decreasing the amount of pollutants in water supplies and having safer drinking and usable water.



# Tyvtswi\$

783 million people do not have access to clean water. <sup>[1]</sup>

6-8 million people die a year from water related diseases and disasters.<sup>[2]</sup>

Many water purification systems are costly and not efficient.



# Tlsxsgexep}wnwC\$

Catalyst: A substance that speeds up a chemical reaction

Photocatalysis: A catalytic process facilitated by light



## Tlsxsgexep}xng\$Tvsgiww\$jsv\$[exiv\$Tyvnjngexnsr

### Xli\$Ferh\$Ket

Two energy bands in TiO2

Valence band  $(V_b)$ - holds outer electrons

Conduction band ( $C_b$ )- The band that accepts the electrons from  $V_b$ . When electrons move to  $C_b$ , they become mobile and transport charge<sup>[3, 4]</sup>

### Xli\$Ferh\$Ket\$gsrxmryih222

Electron can be raised from  $V_b$  to  $C_b^{[3, 4]}$ 

Has become excited

C<sub>b</sub> will have a negative charge due to gaining of electron

 $V_b$  will have a positive charge in the form of an electron hole

Electron holes facilitate the oxidation of a pollutant

Oxidation nurifies the water





# [1}\$Xnxernyq\$Hns hhiC\$

A semiconductor

Harmless to the environment and human/animal population<sup>[3]</sup>

Cost effective and easily attainable<sup>[3]</sup>



# Syv\$I | tivmg irx

- Sol-Gel coating precursors
  - Titanium Tetraisopropoxide (TTIP)
  - Acetylacetone (ACAC)
  - Ethanol Alcohol (EtOH)
- The catalyst
  - Titanium dioxide (TiO<sub>2</sub>)- formed after



The sol-gel before TiO2 is added

### Xli\$VspIKip\$V}rxlivmv\$Tvsgivv\$

Magnetically stir the TTIP, ACAC, EtOH together to thoroughly combine each precursor

Add TiO<sub>2</sub> particles to the sol-gel

Clean quartz slide substrates

Dip each slide in the sol-gel solution

Dry slides



#### [1}\$%sp1Kip\$Hnt\$GsexC\$

Build a reactor with dip-coated rods and UV-lights for photocatalytic reaction to take place in and degrade the contaminants inside the water.<sup>[5]</sup>



### Viwiewgl\$Jyiwxmsr\$

# How does the thickness of the sol-gel coating affect photocatalytic ability?

# Xvæpv\$erh\$Erep}wnv\$

Manipulated variable: Coating thickness

2, 4, 6, 8 dip trials in TiO<sub>2</sub> sol-gel

Raman spectroscopy imaging

UV-Vis Methylene blue degradations



### Viwypw \$Veq er \$Vtigxxswgst}\$\$q ekiw







4 dips



# 6 dips



# 8 dips

#### Qixl}piri\$Fpyi\$YZ1Znw\$Hikvehexnsrw\$



### Hmwgywwmsr\$

All slides has some form of cracking and spotting

Drying the slides in a vacuum oven reduced, but did not eliminate, cracking

P25 particles are clearly visible on all slides

The 8 dip slide degraded the most pollutant during the first



No certain thickness of coating prevents cracking on the surface of slide.

The thicker the sol-gel coating on the slide, the better its degradation ability on a pollutant.

## Jyxyvi\$Ksepv\$

Dip coat quartz rods in the optimal sol-gel solution, for a photocatalytic reactor

Run degradation trials within the reactor

# Egors { pihkq irxw\$



Thank you to: Saturday Academy National Science Foundation Portland State University Dr. Jun Jiao Simon Fowler Ryan Catabay

## Vijivirgiw\$

[1] "Facts About Water & Sanitation." Www.water.org. Water.org, 2015. Web. 7 Aug. 2016.

[2] "Facts and Figures." 2013. UN Water, 2013. Web. 07 Aug. 2016.

[3] Hashimoto, Kazuhito, Hiroshi Irie, and Akira Fujishima. "TiO2 photocatalysis: a historical overview and future prospects." *Japanese journal of applied physics* 44.12R (2005): 8269.

[4] Lee, Seul-Yi. "TiO2 Photocatalyst for Water Treatment Applications." *TiO2 Photocatalyst for Water Treatment Applications*. ScienceDirect, 16 July 2013. Web. 07 July 2016.

[5] S. Fowler, R. Catabay, and J. Jiao. Optimization of Photocatalytic Films for Water Purification. [2015].