Exploring the effect of temperature and volumetric moisture content on the thermal conductivity of green roof soil

By. Helen Na Yeon Kim

At GBRL...

Green Roof at Hayden Meadows Walmart (N Portland)

Optimize GR performance

Storm Water Management (retention)

Heat Transfer into the Building

- ► Air Conditioning (RTU) Performance
- Urban Climate (Heat Island Effect)

Research Aims

Thermal conductivity of green roof soil as a function of:

Volumetric Moisture Content (mL/mL)

► Temperature (°C)

Background

- Thermal Conductivity (W/mK): the amount of heat passing in unit time through a unit cross-sectional area of soil under a unit temperature gradient applied in the direction of this heat flow (Farouki 1981)
- How readily/easily a material can conduct heat
- Lower the thermal conductivity, better the insulation
- moisture content, temperature, phase change of soil water, compaction level, soil structure, soil components, density and porosity of soil (Farouki 1981)

Energy Balance

- Incident global radiation
- Long-wave Radiations
- Sensible heat exchange by convection
- Latent heat flux due to evapotranspiration
- Sensible heat flux by conduction through roof soil

Fig 1 (Ouldboukhitine et al. 2011)

Hypothesis:

Green roof soil will have higher thermal conductivity in average with increasing volumetric moisture content and temperature of soil.

Experimental Design

- KD2 Pro w/ dual needle probe (k and T measurements)
- Two buckets of sample soil (1250mL each)
- @ different water content levels (0%, 5%, 8%, 16%)
- Thermotron (5°C -45°C, by 5°C)
- 8 hr @ each T, 15 minute interval
- ► H_2O evaporated → soil weighed

Experimental Set up

Effect of Average Temperature and Moisture Content of Soil on Average Soil Thermal Conductivity

Percentage increase in Average Thermal Conductivity Vs. Change in Average Temperature °C

Percentage increase in Thermal Conductivity Vs. Average Temperature of Soil (Comparison between Dry and Wet Soil)

Conclusion

- Average K increased by up to 83% w/ 38°C increase in average T
- Average K increased by up to 95% w/ 16% increase in moisture (5°C 43°C)

► Temperature & Volumetric Moisture Content → SIGNIFICANT!

Citations

- Farouki, Omar T. Thermal properties of soils. No. CRREL-MONO-81-1. COLD REGIONS RESEARCH AND ENGINEERING LAB HANOVER NH, 1981.
- Ouldboukhitine, Salah-Eddine, Rafik Belarbi, Issa Jaffal, and Abdelkrim Trabelsi. "Assessment of green roof thermal behavior: a coupled heat and mass transfer model." *Building and Environment* 46, no. 12 (2011): 2624-2631.

Image Citations

- http://www.prarchitects.com/news/recent-news/p-r-designed-hayden-meadowswalmart-to-feature-ecoroof/ (Walmart Computer model)
- Ouldboukhitine, Salah-Eddine, Rafik Belarbi, Issa Jaffal, and Abdelkrim Trabelsi. "Assessment of green roof thermal behavior: a coupled heat and mass transfer model." *Building and Environment* 46, no. 12 (2011): 2624-2631.
- http://upload.wikimedia.org/wikipedia/en/thumb/b/b3/Portland_State_University_L ogo.svg/511px-Portland_State_University_Logo.svg.png (PSU Logo)

Acknowledgements

- NSF
- REU Program and Meaghan
- GBRL at PSU
- Dr. David Sailor
- Dylan, Isaac and Salah

