RILEY HUMBERT REU SYMPOSIUM AUGUST 10TH, 2018

Synthesis and Characterization of Pd/Au Carbon Supported Catalysts

Overview

Current Issue and Solutions

- Trichloroethylene leached into groundwater
- GAC and Air stripping

Palladium Catalysts

- Gold as a promoter metal
- Carbon Supports

Synthesis Process

- Sonochemical
- Solvothermal
- **TEM Analysis**
- **Reaction Rates**

Purification of Groundwater

Issue

Trichloroethylene (TCE)

Commonly used as a solvent in the electronics industry [1]

 Leached into water sources after disposal

Health Hazards [2]

- Carcinogenic
- Kidney and liver damage
- Reproductive issues

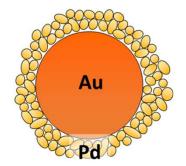
Current Solutions

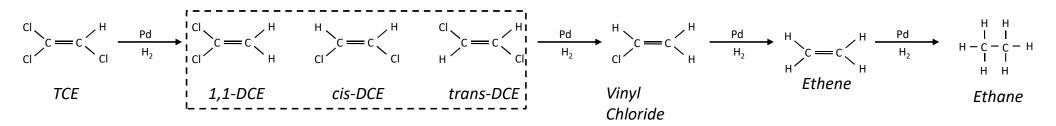
Granular Activated Carbon (GAC)

- Adsorbs contaminants onto surface
- Saturates quickly
- Does not destroy TCE

Air Stripping

- Removes headspace continuously from above a liquid
- Requires GAC to purify resulting air
- Does not destroy TCE


Palladium Bi-Metallic Catalysts


Chosen for its reactivity and selectivity [3]

- Low susceptibility to degradation
- High reduction activity

Pd reactivity boosted when supported by a second metal

- Gold, platinum, and alumina have been looked at
- Gold used for this study

Pd/Au Carbon Supported Catalysts

Carbon Supports

GAC

• A form of carbon with small pores

Graphite

 A many layered crystalline carbon structure

Graphene

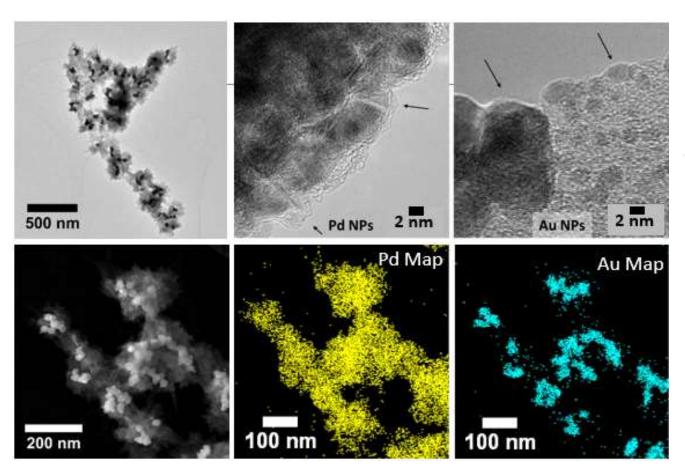
• A single layer sheet of graphite

Carbon Black

• A sponge-like carbon powder

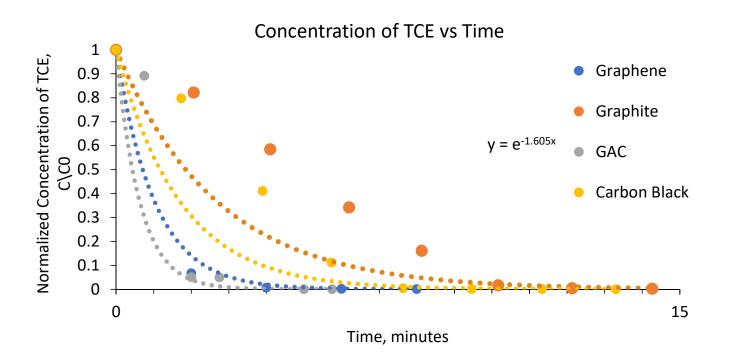
Benefits

Prevent Contamination of Treated Water


- Unsupported NPs difficult to retrieve from water.
- Supports
 - anchor NPs
 - control aggregation
 - offer practicality

Adsorption

- Carbon GAC has the ability to adsorb particles
- Synergistic interaction between support and catalyst


Synthesis

Sonochemical	 Precursors of Palladium (III) Acetate (Sigma Aldrich) and Tetrachloroauric Acid Trihydrate (Sigma Aldrich) Sonicated in acetone (ACS Grade)
Solvothermal	 Carbon support is added to the sonicated solution Solution is put in autoclave for 24 hours at room temperature

TEM Analysis of Pd/Au Nanoparticles on Graphene

Rate of Reaction

- GAC has a reaction rate almost double that of graphene
- High GAC and graphene rates likely due to high surface area
- K Values
 - GAC: 0.027
 - Graphene: 0.016
 - Carbon Black: 0.01
 - Graphite: 0.006

Current Solutions

- Granular Activated Carbon
 - Saturates quickly
 - Does not destroy TCE
- Air Stripping
 - Requires use of GAC
 - Not 100% effective
 - Does not destroy TCE

Our Solution

- Pd/Au Carbon Supported Catalyst
 - Synergistic effect between catalyst and carbon supports
 - Quick reaction time
 - Reduces TCE down to ethane

Conclusion

Summary of Results

Nanoparticles

Carbon Supports

Size

- Pd: 2-3 nm
- Au: 10-15 nm

Morphology

- Irregular shape
- Crystal structure
- Pd aggregate shell around Au center

GAC

- High surface area
- Able to adsorb
- K: 0.027

Graphene

- High surface area
- Flat plane
- No adsorption abilities
- K: 0.016

Acknowledgements

This research was funded by:

- •National Science Foundation (NSF)
- •Oregon Nanoscience and Microtechnologies Institute (ONAMI)
- •Johnson Scholarship

Thank You to:

- Dr. Jiao
- Kavita Meduri
- Dr. Skip Rochefort
- Portland State University
- Oregon State University

References

[1] H. H. Russell, J. E. Matthews, G. W. Sewell, R. S. Kerr Environmental, and W. W. Kovalick, "Ground Water Issue EPA TCE Removal from Contaminated Soil and Ground Water Superfund Technology Support Center for Ground Water," 1992.

[2] "Trichloroethene in Drinking-water Background document for development of WHO Guidelines for Drinking-water Quality."

[3] M. S. Wong, M. O. Nutt, K. N. Kowalski, and J. B. Hughes, "Designing Pd-on-Au bimetallic nanoparticle catalysts for trichloroethene hydrodechlorination," *AIChE Annu. Meet. Conf. Proc.*, vol. 39, no. 5, p. 9795, 2005.

https://communications.oregonstate.edu/brand-guide/visual-identity/logo/guidelines

http://sandacom.com/news/clips/sanda_onami.html

https://he.cecollaboratory.com/portlandstateuniversity

https://www.nsf.gov/policies/logos.jsp

https://nanoparticle.hokkaido.university/en/research/alloynoble