Romina Hernandez

Modeling and Stimulation of Randomly Assembled Nanowire Networks

REU, August 11, 2017

Portland State University Department of Electrical and Computer Engineering (ECE)

www.teuscher-lab.com | rehernandez@cpp.edu

What are nanowires?

- A nanoscale rod made of semiconducting material, used in miniature transistors and some laser applications. [7]
- A wire made from nanotubes. A nanowire allows a much lower current to flow compared to metal wire. [7]
- Nanostructures are considered the critical component in a wide range of potential nanoscale device applications [1]

 Green, Joshua M., et al. "Controlled Fabrication of High-Yield CdS Nano Structures by Compartment Arrangement." 16 Apr. 2008.

[7] Teuscher, Christof et al. "The Power of Power-Laws: Or How to Save Power in SoC." IEEE, 2011. 1–6. CrossRef. Web. 10 Aug. 2017.

Why are nanowires important?

- Critical component in a wide range of potential nanoscale device applications:
- 1. Performing computation (i.e., transistors) [2]
- 2. Connections (i.e., wires) [8]
- **3.** Useful in microscopy [3]
- 4. Solar cells [4]

[2] Y. Li, L. Wei, X. Chen, R. Zhang, Z. Sui, Y. X. Chen, J. Jiao, and L. M. Mei, "Efficient PbS/CdS Co-sensitized Solar Cells Based on TiO2 Nanorod Arrays," Nanoscale Res Lett., 2013.

[3] J. Wu, M. Eastman, T. Gutu, M. Wyse, J. Jiao, S.-M. Kim, M. Mann, Y. Zhang and K. Teo, "Fabrication of Carbon Nanotube-based Nanodevices Using a Combination Technique of Focused Ion Beam and Plasma-enhanced Chemical Vapor Deposition," Appl. Phys. Lett., Vol.

[4] Wu, Cuncun, et al. "ZnO Nanosheet Arrays Constructed on Weaved Titanium Wire for CdS-Sensitized Solar Cells." Nanoscale Research Letters, 11 Mar. 2014.

[8] Teuscher, Christof et al. "Wire Cost and Communication Analysis of Self-Assembled Interconnect Models for Networks-on-Chip." Proceedings of the 2Nd International Workshop on Network on Chip Architectures. New York, NY, USA: ACM, 2009. 83–88. ACM Digital Library. Web. 10 Aug. 2017. NoCArc '09.

Project Goal

 The main goal of this project is to propose new models for self-assembled nanowire networks and to evaluate their performance and properties.

[7] Teuscher, Christof et al. "The Power of Power-Laws: Or How to Save Power in SoC." IEEE, 2011. 1–6. *CrossRef.* Web. 10 Aug. 2017.

[8] Teuscher, Christof et al. "Wire Cost and Communication Analysis of Self-Assembled Interconnect Models for Networks-on-Chip." Proceedings of the 2Nd International Workshop on Network on Chip Architectures. New York, NY, USA: ACM, 2009. 83–88. ACM Digital Library. Web. 10 Aug. 2017. NoCArc '09.

www.teuscher-lab.com Portland State University

MATLAB

- MATLAB stands for "matrix laboratory".
- This program, is specifically useful in this project because:
 - 1. MATLAB enables quicker computational results: for research it provides fast prototyping.
 - 2. Has many useful function toolboxes, so no need to reinvent new ones but use those to build upon what you want.
 - **3.** Great plotting tools.
 - **4.** Interactive matrix calculator.

First Steps

- Starting with MATLAB: learn all functions, inputs/outputs, variables, etc.
- Create step-by-step code that gives us what we want.
- Learn good programming skills such as keeping "visualization separate from calculations".
- This will help us re use our data/codes.

Methodology

- **1.** Generate grid of dimension NxM
- 2. Add one wire: plot a line segment
- **3.** Generate multiple random points on the grid.
- 4. Use linear equation formula to find coordinate for two intersecting lines.
- 5. Plot function that will plot a marker on intersection given the formula.
- 6. Test functions for 2 single lines.
- 7. Create network of multiple random plotted wires.
- 8. Include formula function to determine more than one intersection at a time.
- 9. Receive all intersection points as a matrix.

Early Code

%STEP 1:Grid Gen %Generate a Grid	erator x-by-y.
function b1 - de	perateCrid(v v)
close all:	
cidezecos(x+1 w	.1).
bold on	+1);
ht_proloc(acid)	
$n_1 = pcotor(grta);$	
Maxis([0 x 0 y])	
cotormap white;	
eno	R.
%Syntax: [han	dle]=gridGenerator(x coordinate, y coordinate)
%Inputs:	
K & y coordi	nates.
%Outputs:	
% handle, is w % vou can call	hat it is named but when calling from the command window, it whatever iust as long as it is being equal to the
% function and	you are giving it values from there. Point of the "handle"
% is to be able	e to use it wherever.
KExample: handles	=generateGrid(5,4)
K	%
KAuthor: Romina I	Hernandez
KEmail:minaherna	ndez41@gmail.com
KCal Poly Pomona	
%Created: July	17
Klast Revised: 1	1 25

%Point Intersection Drawn

This functin actually draws out the point where the lines intersect aka coordinates.
%
unction [h4] = plotIntersection(Px,Py) lot(Px,Py,'ro', 'markersize',9,'Linewidth',2); nd
Author: Romina Hernandez
Email:minahernandez41@amail.com
Cal Poly Pomonal
Created: July 17
Last Revised: July 25

Main Function: Important Code

%Checking Intersections between Wires

```
<u>%</u>______%
function [h3.intersection] = checkWireIntersections(rows.columns.numWires)
h3=generateGrid(rows,columns);
data=generateWireData(rows,columns,numWires);
      for i=1:numWires
          x1=data(1,1);
          y1=data(1,2);
          x2=data(1,3);
          y2=data(1,4);
          addWireToFigure(x1,y1,x2,y2);
       end
intersection=[];
k=0;%counter 'k' is first equal to zero, its initial state starts at 0.
       for i=1:numWires-1
           x1=data(i,1);
           y1=data(1,2);
           x2=data(1.3):
           y2=data(1,4);
              for j=1:numWires-i
                     x3=data(i+j,1);
                     y3=data(i+j,2);
                     x4=data(i+j,3);
                     y4=data(i+j,4);
                     k=k+1:
                     [Px,Py]=getCoordinateFormula(x1,y1,x2,y2,x3,y3,x4,y4);
       disp(Px);
       else
              Px=0:
              Py=0;
       end
       if(((y1<=Py && y2>=Py)||(y1>=Py && y2<=Py))&&(y3<=Py && y4>=Py)||(y3>=Py && y4<=Py))
                 disp(Py);
        else
              Px=0:
              Pv=0;
       end
       if(Px~=0 || Py~=0)
              plotIntersection(Px,Py);
              intersection(k,:)=[Px,Py];
        end
   end
end
```

```
%Data Generator for Wires
%______%
function [data] = generateWireData(rows, columns, numWires)
for i=1:numWires
      x1=1+(rows-1).*rand(1,1,1);
      y1=1+(columns-1).*rand(1,1,1);
      x2=1+(rows-1).*rand(1,1,1);
      y2=1+(columns-1).*rand(1,1,1);
      data(i,:)=[x1,y1,x2,y2];
end
end
%______%
%Svntax:
%Inputs: rows, signify the y values. Columns represent the x values.
%Outputs: data, will used when finding the intersection.
%Example: data=generateWireData(6,5,7)
%data =
    5.6137
            4.2015
                    2.4297
                             3.1747
    5.9239
            3.8627
                     5.1948
                             2.7330
    3.3531
            3.2429
                     2.3455
                             3,9961
    3.5194
            3.5872
                     2.5387
                             1.5549
    3.3779
            2.4498
                     4.9406
                              4.1212
    4.3426
            1.5340
                    1.1078
                             3.2394
            4.7576
                    5.9045
    2.5041
                             2.1465
%______
%Author: Romina Hernandez
%Email:minahernandez41@gmail.com
%Cal Poly Pomona
%Created: July 17
%Coordinate Intersection Return Formula
%This returns the coordinates of the intersections
%when the denominator is equal to 0, then there is this {[]}, and the plot
%is not displayed.
function [Px, Py] = getCoordinateFormula(x1, y1, x2, y2, x3, y3, x4, y4)
denom=(x1-x2).*(y3-y4)-(y1-y2).*(x3-x4);
Px=(((x1.*y2)-(y1.*x2)).*(x3-x4)-(x1-x2).*((x3.*y4)-(y3.*x4)))/denom;
Py=(((x1.*y2)-(y1.*x2)).*(y3-y4)-(y1-y2).*((x3.*y4)-(y3.*x4)))/denom;
if denom==0
  set(gcf, 'Visible', 'off');
  v=cell(1);
  disp(v);
end
end
%Syntax:
 [x,y value for the coordinate]=getCoord.(x-y values for 2 lines)
%Input:
% the x's & y's for the lines on the grid.
%Output:
% we will be getting the final coordinate, of intersection.
%Example:
 testIntersection
   3.5714
   1.4286
%Author: Romina Hernandez
%Email: minahernandez41@gmail.com
%Cal Poly Pomona
%Created: July 17
```

www.teuscher-lab.com

Portland State University

1.0783

1.7882

1.9242

for i=1:numWires
x1=data(i,1);
y1=data(i,2);
x2=data(i,3);
v2=data(i,4);
addWireToFigure(x1,y1,x2,y2);
end
intersection=[];
k=0;
for i=1:numWires-1
x1=data(i,1);
v1=data(i,2);
x2=data(i,3);
y2=data(i,4);
for j=1:numWires-i
x3=data(i+j,1);
$y_3=data(i+j,2);$
x4=data(i+j,3);
y4=data(i+j,4);
k=k+1;
[Px, Py]=getCoordinateFormula(x1, y1, x2, y2, x3, y3, x4, y4);
if(((x1<=Px && x2>=Px) (x1>=Px && x2<=Px))&&(x3<=Px && x4>=Px) (x3>=Px && x4<=Px))
disp(Px);
else
Px=0;
Py=0;
end
if(((y1<=Py && y2>=Py) (y1>=Py && y2<=Py))&&(y3<=Py && y4>=Py) (y3>=Py && y4<=Py)) disp(Py);
else
Px=0;
Py=0;
end

function [h3, intersection] = checkWireIntersections (rows, columns, numWires)

h3=generateGrid(rows, columns);

data=generateWireData(rows, columns, numWires);

s	checkWir	eIntersections(5,4,9)
	3.1711	
	1.9785	
	3.4704	
	2.3361	
	1.8686	
	1.4173	
	3.2197	
	2,6024	
	2.1812	
	3.7057	
	2.5938	
	3.2674	
	2.0565	
	2.6951	
	1.9128	
	1.5302	
	2.0673	

Results

<u>File Edit View Insert Tools Desktop Window Help</u>

🗋 🖆 🛃 🌭 🔍 🥄 🧐 🧐 🐙 🔏 📲 🛄 🔲 📰 💷

<u>File Edit View Insert Tools Desktop Window Help</u>

Conclusions/Future Work

- Approaching the nanowire modeling through the stimulation route assisted in our goal to analyze "wires".
- We worked with 2D plotting of wires which only allowed us to determine the efficiency of the way they interconnect through computer software.
- 1.Making the stimulations and models more realistic with respect to actual experiments.

Future Work (2): Network Representation

Future Work (3): Gaussian Model

Translating the nanowire network that forms on the grid into a graph using the Gaussian Model to determine the distance proportional distribution for the rewiring. [7]

•

[7] Teuscher, Christof et al. "The Power of Power-Laws: Or How to Save Power in SoC." IEEE, 2011. 1–6. CrossRef. Web. 10 Aug. 2017.

Acknowledgements

- National Science Foundation
- REU Summer Program
- Dr. Jun Jiao
- Dr. Christof Teuscher
- Wesley Chavez
- Sai Kiran Chirupally

References

[1] Green, Joshua M., et al. "Controlled Fabrication of High-Yield CdS Nano Structures by Compartment Arrangement." 16 Apr. 2008.

[2] Y. Li, L. Wei, X. Chen, R. Zhang, Z. Sui, Y. X. Chen, J. Jiao, and L. M. Mei, "Efficient PbS/CdS Co-sensitized Solar Cells Based on TiO2 Nanorod Arrays," Nanoscale Res Lett., 2013.

[3] J. Wu, M. Eastman, T. Gutu, M. Wyse, J. Jiao, S.-M. Kim, M. Mann, Y. Zhang and K. Teo, "Fabrication of Carbon Nanotube-based Nanodevices Using a Combination Technique of Focused Ion Beam and Plasma-enhanced Chemical Vapor Deposition," Appl. Phys. Lett., Vol. 91, 173122-3 (2007).

[4] Wu, Cuncun, et al. "ZnO Nanosheet Arrays Constructed on Weaved Titanium Wire for CdS-Sensitized Solar Cells ." Nanoscale Research Letters, 11 Mar. 2014.

[5] L. Lampert, A. Barnum, S. Smith, J. Conley Jr., J. Jiao, "Phase Transitions and In Situ Dynamics of Crystal Grain Formation of Alumina Nanotubes Templated by Vertically Aligned Carbon Nanotubes," RSC Adv., Vol. 5, pp. 68251-68259 (2015).

[6] L. Lampert, B. Timonen, S. Smith, B. Davidge, H. Li, J. F. Conley Jr., J. D. Singer, and J. Jiao, "Amorphous Alumina Nanowire Array Efficiently Delivers Ac-DEVD-CHO to Inhibit Apoptosis of Dendritic Cells", Chem. Comm., 50, pp. 1234-1237 (2014).

[7] Teuscher, Christof et al. "The Power of Power-Laws: Or How to Save Power in SoC." IEEE, 2011. 1–6. *CrossRef*. Web. 10 Aug. 2017.

[8] Teuscher, Christof et al. "Wire Cost and Communication Analysis of Self-Assembled Interconnect Models for Networks-on-Chip." Proceedings of the 2Nd International Workshop on Network on Chip Architectures. New York, NY, USA: ACM, 2009. 83–88. ACM Digital Library. Web. 10 Aug. 2017. NoCArc '09.