Free Radical Effect on the Quantum Yield of Silicon Nanoparticles

Rylie Ellison PSU REU 2014 Goforth Lab

August 18, 2014

Si NPs Background

- Tunable light emission
- Applications
 - Light-emitting/harvesting devices
 - Biomedical imaging/tracking

Color tunabilitily by solvent switch (Christine Radlinger)

Quantum Yield

Ratio of excited molecules that deactivate through fluorescence rather than a non-radiative mechanism

$$\Phi = \frac{\# \text{ photons emitted}}{\# \text{ photons absorbed}}$$

Purpose

 Determine if free radicals are present on the outside of the Si NPs that are reducing the quantum yield.

Determination of QY using Fluorescence

 Compare sample fluorescence to that of a fluorophore with a known quantum yield:

$$\Phi_{\rm X} = \Phi_{\rm ST} \left(\frac{{\rm Grad}_{\rm X}}{{\rm Grad}_{\rm ST}} \right) \left(\frac{\eta_{\rm X}^2}{\eta_{\rm ST}^2} \right)$$

- X indicates the test samples and ST indicates the standard
- Grad is the Gradient, or slope from the plot of absorbance vs. integrated intensity
- η is the refractive index of the solvents used

Sample Graph

Synthesis of Si NPs

- Air free
- Hydrogen-terminated
- Red/orange-emitting
- Toluene solvent

Standards

- Cresyl Violet
- Nile Blue
- L-tryptophan
 - Φ_F=0.12
- Coumarin 153 in Cyclohexane
- Coumarin 153 in EtOH

OH

ÑΗ₂

• Φ_F=0.38

Coum 153 vs Si NPs – UV-Vis

Coum 153 vs Si NPs – PL 300

Si NPs Quantum Yield

Ex λ = 300 nm Standard = Coumarin 153 in EtOH

$$\Phi_{X} = \Phi_{ST} \left(\frac{Grad_{X}}{Grad_{ST}} \right) \left(\frac{{\eta_{X}}^{2}}{{\eta_{ST}}^{2}} \right)$$

$$\Phi_{NP} = (0.38) \left(\frac{15306}{573578}\right) \left(\frac{1.496^2}{1.361^2}\right)$$

 $\Phi_{NP} = 1.23\%$

Standards QY Cross-Calculation

- Ex λ = 300 nm
- Tryptophan: $\Phi = 0.11 (0.12 \text{ actual})$
- Coumarin 153:
- $\Phi = 0.40 (0.38 \text{ actual})$

Difference in Absorption and PLE Spectra

Absorption (black lines), PLE (grey lines) and PL (red, blue, or pink lines) spectra of dec-Si NPs dispersed in (A) hexane, (B) ethanol, (C) butanol, and (D) decanol. (+ and •) indicate corresponding PLE and PL spectra; that is the PLE is monitored at the correspondant PL λ_{max} (excitation at 370 nm). Arrows indicate the approximate onset of absorption. Insets, show the color of the Si NP colloids under 365 nm excitation.

Method 2: Using PLE

PLE 590: Measured intensity at 310 nm (x-axis of gradient).

PL 310: Integrate intensity of emission peaks (y-axis of gradient).

Toluene

SI NPs 1/4

SI NPs 3/4

SI NPs 1/3

51 NPs 2/3

-Courn test

-Courn A

Courn B

- Courri C

- Courn D

Courr E

- FIOH

Method 2: Using PLE

Φ of Si NPs in Tol.

- 310 nm: 0.16
- 300 nm: 0.105

PLE/PL gradients at λ_{ex} = 310 nm

Radical Scavenger

• TEMPO

- (2,2,6,6-Tetramethylpiperidin-1-yl)oxy
- Long-lived radical scavenger
- Soluble in polar and nonpolar solvents

Red Si NPs w/ TEMPO Time Lapse

Quantum Yield Comparison

PLE/PL gradients at λ_{ex} = 300 nm

Ways to Increase Quantum Yield

- Use toluene as a solvent (over pentane)
- Lower λ_{Ex}
- Oxidize Si NPs
- Add a radical scavenger (TEMPO)

Future Research

- Continue optimizing Quantum Yield Procedure for Si NPs
- Continue working with Radical Scavenger
- Quantum Yield of Si NPs
 - In different Solvents
 - Different times after etching
 - Different times after adding TEMPO
 - At different Excitation Wavelengths

Acknowledgements

- PSU REU Program
- Dr. Andrea Goforth
- Christine Radlinger
- Sheng, Victor, & Colin
- Candice Randall
- NSF

References

- 1. Brouwer, A. M. Standards for Photoluminescence Quantum Yield Measurements in Solution. *Pure Appl. Chem.* **2011**, *83*, 2213-2228.
- Chiu, S. K.; Manhat, B. A.; DeBenedetti, W. J.; Brown, A. L. J. Mater. Res. 2013, 28 (2), 216-230.
- 3. DeBenedetti, W. J. I.; Shi J.; Chiu S. K.; Manhat B. A.; Radlinger C. M. *J.Phys. Chem. C.* **2014** (submitted).
- Fery-Fogues, S.; Lavabre, D. J. Of Chem. Ed. 1999, 76, 1260-1264.
- 5. Jobin Yvon Ltd. A Guide to Recording Fluorescence Quantum Yields.

Image Citations

- <u>http://en.wikipedia.org/wiki/Tryptophan#mediaviewer/File:</u> <u>L-Tryptophan_-_L-Tryptophan.svg</u>
- <u>http://www.sigmaaldrich.com/catalog/product/aldrich/5461</u>
 <u>86?lang=en®ion=US</u>
- <u>http://en.wikipedia.org/wiki/Fluorescence#mediaviewer/Fil</u>
 <u>e:Jablonski_Diagram_of_Fluorescence_Only.png</u>
- Jobin Yvon Ltd. A Guide to Recording Fluorescence Quantum Yields.
- DeBenedetti, W. J. I.; Shi J.; Chiu S. K.; Manhat B. A.; Radlinger C. M. *J.Phys. Chem. C.* 2014 (submitted).

Standards vs Si NPs – UV-Vis

Red Si NPs Absorbance Comparison

Red Si NPs Emission Comparisons

