WATER TREATMENT USING PALLADIUM-GOLD NANOPARTICLES ON GRANULAR ACTIVATED CARBON: THE CATALYTIC EFFECTS OF SURFACE AREA USING BET THEORY

> Dr. Jun Jiao (P.I.) Kavita Meduri (Mentor) August 12, 2016 REU-Portland State University

LEXI CROWELL WORCESTER POLYTECHNIC INSTITUTE

PRESENTATION MAP

 \bigcirc

Earth's Water

• Where does it come from?

Our Catalyst

- Palladium-Gold Nanoparticles on Granular Activated Carbon
- The Process

Water Contaminants

Trichloroethylene

Characterization

- Surface Area
- BET Theory

Results and Conclusion

0

• Projects Future

WHAT I DID OVER 7 WEEKS...

The purpose of our research is to find the most effective catalyst that will decrease the amount of Trichloroethylene in water over a specified amount of time.

My research over the past 7 weeks has been to investigate the characteristics of our catalyst, in which I focused on a method called BET Theory.

Earths Water

71% of the Earth is made of water

There is only 2.5% of freshwater on Earth 30.1% of freshwater comes from the ground Over 50% of the U.S. relies on groundwater for drinking water

GROUNDWATER CONTAMINANTS

- Ground water contamination occurs when manmade products get into the groundwater and cause the water to become toxic
- Drinking contaminated groundwater can have serious health effects such as cancer and hepatitis

Source: http://cdn.firespring.com/images/af24b3fc-c41e-435f-b0e4-0b2dba3e8ffa.jpg

TRICHLOROETHYLENE (TCE)

HOW TO REMEDIATE GROUNDWATER

WHY OUR CATALYST IS EFFECTIVE

CHARACTERISTICS OF PRECURSORS

THE PROCESS

 Solvothermal Method: A transformation of precursors in the presence of a solvent under moderate to high pressure and temperature

http://adsabs.harvard.edu/abs/2007JMatS..42.65 83X

- 1. stainless steel autoclave
- 2. Solution
- 3. Teflon liner
- 4. stainless steel lid
- 5. Spring

RESULTS

PRESENTATION MAP

 \bigcirc

Earth's Water

• Where does it come from?

Our Catalyst

- Palladium-Gold Nanoparticles on Granular Activated Carbon
- The Process

Water Contaminants

Trichloroethylene

WHY IS SURFACE AREA IMPORTANT?

The surface area of the Granular Activated Carbon (GAC) is extremely large

This indicates that there is more reaction area for the catalyst

RESEARCH PURPOSE

BRUNAUER-EMMETT-TELLER

- Brunauer-Emmett-Teller Theory was developed in 1938 by 3 physicists
- The theory explains the physical adsorption of gas molecules

BET THEORY

The theory aims to explain the physical adsorption of gas molecules on a solid surface and serves as the basis for an important analysis technique for the measurement of the specific surface area of a material

IMPORTANT FACTORS

- BET Equation
- Pressure
- Adsorbate
- The 5 assumptions made when using theory

5 ASSUMPTIONS MADE

Adsorptions only occur on well defined sites A molecule can act as a single adsorption site for a molecule of the upper layer

The desorption is a kinetically limited process

The uppermost molecule layer is in equilibrium with the gas layer At saturation pressure, the molecule number tends to infinity

QUANTACHROME NOVA 2200E SERIES

- Analyzes pore size and surface area
- Affordable
- Small and compact
- Can use any gas as adsorbate
- Calculates BET and Langmuir surface area

http://www.giangarloscientific.com/graphics/quantachrome/Nova-e-Series.jpg

SURFACE AREA RESULTS

Parameters

- Pressure
- Mass of GAC
- Operating time

Results

 Surface Area: 459.989 m²/g

PROJECT FUTURE

- Continue measuring surface area of catalyst using BET Method
- Characterization using SEM and TEM
- Other synthesis techniques

WORKS CITED

1. Carole, W.; Colacot, T. Understanding Palladium Acetate from a User Perspective. Chemistry: A European Journal Mini review, [Online], April 29, 2016. <u>http://onlinelibrary.wiley.com.ezproxy.wpi.edu/doi/10.1002/chem.201601450/epdf</u> (accessed July 20, 2016).

2. Tsuji, Y.; Fujihara, T. Homogeneous Nanosize Palladium Catalysts. Inorganic Chemistry Article, [Online], September 29, 2006. http://pubs.acs.org.ezproxy.wpi.edu/doi/pdf/10.1021/ic061872q (accessed July 20, 2016).

3. Vile, G.; Albani, D. A Stable Single-Site Palladium Catalyst for Hydrogenations. Angewandte Chemie, [Online], July 31, 2015. <u>http://onlinelibrary.wiley.com.ezproxy.wpi.edu/doi/10.1002/anie.201505073/epdf</u> (accessed July 20, 2016).

4. Pagliaro, M.; Pandarus, V. Heterogeneous versus Homogeneous Palladium Catalysts for Cross-Coupling Reactions. ChemPubSoc Europe, [Online], July 27, 2012. <u>http://onlinelibrary.wiley.com.ezproxy.wpi.edu/doi/10.1002/cctc.201100422/full</u> (accessed July 20, 2016).

5. Toebes, M.; van Dillen, J.; de Jong, K. Synthesis of supported palladium catalysts. Journal of Molecular Catalysis, [Online] 2001, 173, 75-98.

6. Bonarowksa, M.; Kaszkur, Z.; Lomot, D.; Rawski, M.; Karpinski, Z. Effect of gold on catalytic behavior of palladium catalysts in hydrodechlorination of tetrachloromethane. Applied Catalysis B: Environmental, [Online] 2015, 162, 45-56.

7. Baeza, J.; Calvo, L.; Gilarranz, M.; Mohedano, A.; Casas, J.; Rodriguez, J. Catalytic behavior of size controlled palladium nanoparticles in the hydrodechlorination of 4-chlorophenol in aqueous phase. Journal of Catalysis, [Online] 2012, 293, 85-93.

8. Stakheev, A.; Mashkovskii, I.; Baeva, G.; Telegina, N. Specific features of the catalytic behavior of supported palladium nanoparticles in heterogeneous catalytic reactions. Russian Journal of General Chemistry, [Online], May 7, 2010. http://au4sb9ax7m.search.serialssolutions.com/ (accessed July 20, 2016).

9. Matsumoto, H. Catalytic Behavior of Palladium-Zeolite in Oxidation of Methane to Carbon Monoxide and Hydrogen. Journal of Physical Chemistry, [Online] 1994, 98, 5180-5182.

10. Silva, A.; Robles-Dutenhefner, P.; Dias, A.; Fajardo, H.; Lovon, A.; Lovon-Quintana, J.; Valenca, G. Gold, palladium and gold-palladium supported on silica catalysts prepared by sol-gel method: synthesis, characterization and catalytic behavior in the ethanol steam reforming. Journal of Sol-Gel Science and Technology, [Online] 2013, 67, 273-281.

11. Tesfamichael, A.; Suggs, K.; Felfli, Z.; Wang, X.; Msezane, A. Atomic gold and palladium negative ion-catalysis of water to peroxide: fundamental mechanism. Journal of Nanoparticle Research, [Online] 2013, 15.

12. Pura, J.; Kwasniak, P.; Jakubowska, D. Investigation of degradation mechanism of palladium-nickel wires during oxidation of ammonia. Catalysis Today, [Online] 2013, 208, 48-55.

13. Liu, R.; Crozier, P.; Smith, C.; Hucul, D.; Blackson, J.; Salaita, G. Metal sintering mechanisms and generation of palladium/alumina hydrogenation catalysts. Applied Catalysis A: General, [Online] 2005, 282, 11-121.

14. Mitchell, M.; Vannice, M. Adsorption and Catalytic Behavior of Palladium Dispersed on Rare Earth Oxides. Industrial Engineers Chemical Fundamentals, [Online] 1984, 23, 88-96.

ACKNOWLEDGEMENTS

Au-Pd on GAC Research Group

- Dr. Jun Jiao
- Kavita Meduri

REU Program

- Dr. Jun Jiao
- Dr. Erik Sanchez
- Audrey Siefert

WATER TREATMENT USING PALLADIUM-GOLD NANOPARTICLES ON GRANULAR ACTIVATED CARBON: THE CATALYTIC EFFECTS OF SURFACE AREA USING BET THEORY

> Dr. Jun Jiao (P.I.) Kavita Meduri (Mentor) August 12, 2016 REU-Portland State University

LEXI CROWELL WORCESTER POLYTECHNIC INSTITUTE

